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A method is presented which allows one to obtain explicit analytical expressions 
(both exact and asymptotic) for many of the physically interesting quantities 
related to a multistate random walk (MRW). The exact results include the 
Laplace-Fourier-transformed probability distribution (continuous time) and 
generating function (discrete time), and closed evolution equations for the 
propagators related to each "internal" state of the walker. Analytical expressions 
for the scattering dynamical structure function and the frequency-dependent 
diffusion coefficient are given as illustrations. Asymptotic approximations to the 
single-state propagators are derived, allowing a detailed analysis of the long- 
time behavior and the calculation of asymptotic properties by single-state 
random walk standard methods. As an example, analytical expressions for the 
drift and diffusion coefficients are given. 

KEY WORDS: Multistate random walk; exact results; embedded Markov 
process; asymptotic properties. 

1. I N T R O D U C T I O N  

In recent years considerable interest has arisen in the theory and applica- 
tions of multistate random walks (MRWs),(1-3) based on the great variety 
of processes that can be described by these models/4 11) The central idea is 
that of a random walk (RW) on a lattice, where the walker can be at each 
site in a number of "internal" states whose properties affect that of the RW. 

Although these models have led to a variety of results, it is usually 
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difficult or impossible (3-5) to obtain explicit analytical expressions for many 
quantities of interest (either exact or asymptotic). The difficulty lies in the 
fact that the evolution equations for MRWs are matricial, and the usual 
procedures to solve them involve the diagonalization of matrices whose 
dimension is the number of internal states. (3'12~ 

An early approach to this problem was that of Landman and 
Shlesinger, (4~ but their matrix method, though formally elegant and 
general, becomes unmanageable as a computing tool even for moderately 
large matrices. This situation was improved by Roerdink and Shuler, (5) but 
their method only avoids the diagonalization for a restricted class of 
irreducible MRWs, the so-called "locally unbiased" ones. In more general 
cases (e.g., processes with drift (s) or Lorentz-gas models(8.9)), this method 
still requires the computation of the full set of eigenvalues and eigenvectors 
of the transition matrix, a task that can be carried out analytically only for 
some especially simple matrices. Besides, this method only deals with 
asymptotic properties, and it gives no hint of the e x a c t  form of the 
probability distribution, which is needed for a number of applications 
(calculation of the dynamical structure function for scattering on the 
walker,(3' ~1) of frequency-dependent conductivities, (1~) etc.). The resolvent 
matrix (~3~ approach only deals with the marginal (summed over internal 
states) distribution, and analytical calculations can be implemented only 
for systems with a few internal states. 

In this paper we will introduce a method providing analytical expres- 
sions for most of the physically interesting quantities. These expressions are 
derived in a systematic way from the MRW evolultion equations, by means 
of direct algebraic procedures which do not involve the solving of eigen- 
value problems nor make any restrictive assumption on the features of the 
MRW. The method only needs the calculation of the invariants of the 
Fourier-Laplace-transformed transition matrix, allowing one to obtain 
analytical results no matter how complex this matrix may be. In Section 2 
we derive explicit expressions for the Fourier-Laplace-transformed 
probability distributions of continuous-time MRWs. For Markovian 
MRWs we also construct closed evolution equations for the propagators 
related to each single internal state of the walker. In Section 3 we derive, 
for Markovian MRWs, long-time asymptotic approximations for the 
single-state propagators. The number of stationary states of the process 
summed over the lattice is found to be decisive for the long-time behavior 
of these propagators. We also construct expressions for some moments of 
the single-state propagators, and for the drift and diffusion coefficients. 
As an example, these results are applied to a RW on a sparsely periodic 
lattice (5) with drift. All these results are easily extended to discrete-time 
MRWs. Finally, in Section 4 we summarize and discuss the results obtained. 
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2. EXACT RESULTS 

We begin by considering a continuous-time RW on a Bravais lattice 
with translational invariance (the detailed lattice structure and dimen- 
sionality are immaterial). We assume that the walker can be, at any site s, 
in one of a finite number N of internal states (labeled by i =  1,..., N). 3 

Evolution Equations. Let U(s, t) be the probability for the walker to 
be at site s and state i at time t. We assume a description in terms of a 
system of coupled generalized master equations (2'14) (GMEs), 

N t 

0tU(s, t ) = ~  ~ fodt ' W i j ( s - s ' , t - t ' ) P J ( s ' , t  ') (2.1) 
s '  j = l  

where 8~-8/Ot. The spatial convolution can be eliminated by a discrete 
Fourier transform, (2) 

pi(k, t ) =  E [ e x p ( i k .  s ) ]  P'(s, t) 
s 

(We will keep track of transformations by explicitly writing the arguments 
of all functions.) This leads to 

(?tP(k, t) = dt' W(k, t -  t') P(k, t') (2.2) 

where P(k, t) is the (column) vector with components U(k, t) and W(k, t) 
the N x N matrix with elements Wu(k, t). 

Equation (2.2) must be supplemented with suitable initial conditions 
N~(k) = Pi(k, t = 0). Taking ~ ; (s )  = 6~6(s - So), we get U(s, t) - 
Pll l(s, i, t lSo, j, 0), the two-times conditional probability(~2); but unless the 
MRW is Markovian, this is not identical with the propagator for pi.(15) 

Probability Distributions. Taking a Laplace transform 

U(k, u) - Pi(k, t)e-"'  dt 

in Eq. (2.2) and solving for P, we get 

P(k, u )=  EuD-W(k, u)] -1 ~o(k) (2.3) 

3 If the internal states stand for different sublattices of a non-Bravais lattice, with a i the vector 
connecting the origin with the ith site in a unit cell, then s must be replaced by s + ai in all 
subsequent definitions. 
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where ~ is the N •  identity matrix. However, this is an analytical 
expression for P only in a formal sense. What is usually needed is an 
explicit expression for U in terms of the elements of W. 

At this point the usual procedure is to diagonalize W and expand the 
initial conditions vector go(k) in the eigenvector basis, but this can be done 
analytically only for some simple forms of W (which in general is not even 
guaranteed to be diagonalizable(~2)). Nevertheless, it can be shown that 

where 

and 

1 N - - 1  

P(k, u) =/~w(U-~) ~ uN-X-" 5r u) (2.4) 
n=0 

N 

/ ~ ( 2 ) -  det[2g - W(k, u)] = ~ 2 N ~,(k ,  u) (2.5) 
n = 0  

5e~(k, u )=  Z am(k, u) ~n m(k, u) (2.6) 
r r t = 0  

Here am(k, u) are the invariants of W(k, u), and ~,n(k, u) = Wm(k, u) ~o(k). 
(For a Markovian MRW, ~,, 5Pi,, and ~ become independent of u.) 

Equation (2.4) can be verified by multiplying both sides from the left 
by [-20 - W(k, u)], noting from (2.6) that 5~ = ~,~o + W ~  1, and using 

N 

~N = Z ~.wN-"~o=~w(W)~o-O 
n=0 

since ~w(W)---0 by the Cayley-Hamilton theorem. (16) (We have omitted 
the arguments k and u, for simplicity.) Since the Cayley-Hamilton theorem 
is valid for any finite-dimensional matrix, Eq. (2.4) is valid independently of 
the particular MRW being considered. 

Single-State Evolution Equations. For Markovian MRWs, 
W(k, t )=  W(k)3(t+),  so Eq. (2.2) reduces to 

3,P(k, t) = W(k) P(k, t) (2.7) 

Using again the Cayley-Hamilton theorem, we see that 

/,w(a/at) P(k, t) = Aw[W(k)] P(k, t) -= 0 

so using Eq. (2.5) we get 

N 

~(k) O N "P~(k, t )=0 (2.8) 
n = 0  
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It is worth noting that Eq. (2.8) is exactly the same for each P*, i.e., 
they only differ in their initial conditions. Also, though the evolution equa- 
tion (2.7) for P is Markovian, that for each U is a closed Nth-order 
differential equation, so we have a non-Markovian description (12) for each 
pi taken separately. 

Discreto-Time MRWs. If the jumps occur at discrete time intervals, 
the equation describing the MRW is 

N 

P'+l(s)=~ ~ M0(s-s ' )P~(s '  ) (2.9) 
s '  j = l  

where n is the step number. Discrete Fourier transformation leads to 

Pn+ ~(k) = ~(k) P,,(k) (2.10) 

where we adopted vector notation. The generating function for U~(k) is 
defined as the ith component of the vector 

G(k ,z )=  L znP~(k) (2.11) 
n = O  

Multiplying Eq. (2.10) by z "+~, summing over n from 0 to ~ ,  and using 
definition (2.11), we get the known result 

I ! D -  ~ ( k ) ]  G(k, z) = Po(k) (2.12) 

Similarly to the continuous-time case, the explicit solution for G i is 

G'(k, z)-/zM(1/z)~_o Si,(k) (2.13) 

with 

/z 

Sin(k)= ~ am(k) Pn_m(k) (2.14) 
r n = 0  

- P m ( k )  where c~m(k) are the invariants of ~(k),  /~M(2)-det[21 ~ ] ,  and i 
is the ith component of Mm(k) Po(k). The corresponding closed recurrence 
relations for each distribution i Pn(k) are 

N 

Pi,(k)= ~ ~,(k) ' - P . _ , ( k ) ,  n>~N ( 2 . 1 5 )  
l = 1  
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As before, Eq. (2.15) is the same for each Pi n. Also, though the evolution 
equation (2.10) for Pn is Markovian, Eq. (2.15) gives a non-Markovian 
description/12) for each process p i  taken separately, with a memory 
"depth" of N steps. 

Sample Applications. As an illustration, we give the expressions for 
the dynamical structure function S(k, co) and the frequency-dependent 
diffusion coefficient D(co). From the Kubo-Lax linear response theory (1) 
we have 

D(cot= - 2 - ~  2 P'(k, u) 
i = 1  k = O,u = io~ 

Likewise,~3~ 

S(k, c o ) = l R e  ~ pi(k, u) ,=i,~ 
TC i = 1  

Substitution of Eq. (2.4) then gives explicit expressions for S and D in 
terms of Wa. Both expressions must be calculated with thermal equilibrium 
initial conditions N~(k)= 1IN. A practical example can be found in ref. 11. 

3. A S Y M P T O T I C  A P P R O X I M A T I O N S  A N D  PROPERTIES 

We will derive here some asymptotic properties for Markovian MRWs 
(the general non-Markovian case will be treated elsewhere), assuming 
hereafter that probability is conserved. 4 

Genera/Treatment. We start by finding the lowest-order approxima- 
tion to (2.4) for small u, still conserving probability. 

Let ~go = W(k = 0). We define the embedded Markov process ( E M P )  
as the process obtained by summing Eq. (2.1) over all sites of the lattice 
[or by evaluating Eq. (2.2) at k = 0], 

8,P(k = 0, t )=  WoP(k = 0, t) (3.1) 

This equation describes the evolution of the walker in the internal-state 
space, regardless of its position on the lattice. 

Let us assume that the dimension of the kernel of Wo is K, i.e., that 
~/o has K vanishing eigenvalues (1 ~< K <  N). By Eq. (2.5), this is equivalent 
to 

~N_K(k = 0) #0 ,  ~N_X+l(k =0)  . . . . .  ~ N ( k = 0 ) = 0  (3.2) 

4 Th i s  implies  n o  real  res t r ic t ion ,  s ince a p r o b a b i l i t y - n o n c o n s e r v i n g  M R W  c a n  be  m a p p e d  

o n t o  a p r o b a b i l i t y - c o n s e r v i n g  one  b y  i n t r o d u c i n g  one  o r  m o r e  a d d i t i o n a l  i n t e rna l  s tates,  in 

wh ich  the  p o p u l a t i o n  lost  b y  the  o r ig ina l  M R W  is a c c u m u l a t e d .  
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Evaluating Eq. (2.4) at k- -0 ,  approximating for u ~ 0, and using Watson's 
lemma, (17) we get for the EMP the asymptotic expansion 

1 K -  1 t m 

P(k = 0, t) , ~  o0 ~u  K(k = 0)~0m-----= 5~u- x+ m( k = 0) (3.3) 

Now, %/0 is a W-matrix (in the sense of ref. 12), so the final state of 
the EMP must be a finite vector. Thus, we conclude from Eq. (3.3) that 

~Sq~ N K+I(K =0)  . . . . .  oqc~N_ l(k = 0) = 0 (3.4) 

and Eq. (3.3) (Laplace-transformed) reduces to 

uP(k = 0, u) . ~ o  5PN- x(k = 0 ) /~N_  x(k = 0)  (3.5) 

which gives an expression for the final state of the EMP. Summing over the 
i i n t e r n a l  s t a t e s ,  a n d  noting that zN= 1 ~ n (  k ~--- 0 )  = ~n(k  = 0)  (0 ~ n ~ N -  l ), 

we see that Eq. (3.5) conserves probability. 
We now approximate Eq. (2.4) for arbitrary k, keeping in both 

numerator and denominator the lowest possible orders of u allowing one 
to recover Eq. (3.5) at k = 0 (note that the limits k--* 0 and u-~ 0 cannot 
be freely exchanged). This leads to 

(! )c" )' uP(k, u) .'~o l"ln~ON n(k) 2 Un~N n(k) 
rt 1 / \ n = O  

(3.6) 

This is the lowest-order asymptotic approximation for P(k, u) still 
conserving probability, which we call the "minimal" approximation. The 
value of K fully determines the order of the approximation, and equals the 
number of independent stationary states of the EMP. (12) 

The necessary conditions for Eq. (3.6) to be valid are 

~A," K - - I ( k ) u ' ~ N  K(k), ~'N K ~(k)u~5'~N-K(k) 

or in the time domain 

t>>~=Max{~N-X--l(k) 5PN-Kxl(k!~ 
\ ,<(k) ' / 

(3.7) 

with k in the first Brillouin zone and i = 1,..., N. 

Remark. In the preceding derivation we disregarded the possibility of 
W(k) having one or more eigenvalues which identically vanish as functions 
of k, i.e., that a , ( k ) - 0  for some n<~N [see Eq. (3.2)]. This case 
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corresponds to MRWs which are reducible (5'12) on the lattice, i.e., where 
some lattice sites cannot be reached from some others even after an 
arbitrarily large number of steps. Hence, it is evident that, unless we select 
very particular initial conditions, the probability distributions will lack the 
translational invariance assumed for their evolution equations. Although 
examples of such behavior can be found (e.g., the "collapsed" limit of the 
Lorentz gas of ref. 8), they are fairly uncommon in usual applications. The 
theory can be extended to encompass these cases with little effort, rewriting 
the derivation of Eqs. (3.3)-(3.6) from the corresponding particular form of 
Eq. (2.4), but we will not do it here. 

Particular Case K = 1. In this case the EMP has a unique stationary 
state, i.e., W0 is not "decomposable" (we classify W-matrices according to 
van Kampen(~2)). From Eq. (3.6) we get 

o(k) 
P(k, u ) , ~ o  u + r/(k~) - n ( k ,  u) (3.8) 

where 

aN(k ) ,9~ l(k) 
r/(k) = aN l(k)' ~(k) - aN_ ~(k~-~ (3.9) 

Here we defined a distribution II(k, u), having precisely the form given by 
(3.8) for all u, so P(k, t) tends asymptotically to lI(k, t) for long times. 
Laplace-antitransforming Eq. (3.8) gives the Markovian evolution equation 

8tHi(k, t) = -q (k )  Hi(k, t), Hi(k, t = 0) = a~(k) (3.10) 

[exact for Hi(k, t) and asymptotic for U(k, t)]. The validity condition for 
(3.10) is given by Eq. (3.7) with K =  1. 

Note that for t~>z each distribution pi evolves as a single-state 
Markovian RW, with a lattice structure factor/1'2) it(k). Hence each process 
U(k, t) shows a non-Markovian transient, but eventually sets into a 
Markovian asymptotic regime. From the definition of t/ we see, however, 
that this single-state RW will generally involve jumps to far-lying 
neighbors, even if the MRW we started with included only jumps to 
nearest neighbors. 

With (3.8) and (3.10), asymptotic properties of each process pi can be 
calculated in the usual way for single-state RWs. (~) As an example, we will 
work out analytical expressions for the mean displacements and variances, 
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and the drift and diffusion coefficients. 
pi(s, t) is not normalized. Instead, from (3.10) and (3.2) 

U(s, t) , ~  ~ H;(s, t) = / / ; ( k  = 0, t) = a;(k = 0) 
s s 

wherefore we define the mean displacements by s 

3Zs spi(s, t) - iVkH;(k ,  t) k=0 
( s ) i ( t ) - -  E s p i ( s ,  t )  t~r'~ a;-(k) 

Thus, from Eq. (3.10) [-or (3.8) and Watson's lemma ~7)] we get 

(s ) i ( t )  ,_"~ (S) i~ + d t  

with the drift coefficient d given by 

d =  iV~q(k)lu=o=i - 

175 

We first observe that in general 

(3.11) 

(3.12) 

Vk0~N(k)0~N 1(k) k=o (3.13) 

[we used en(k = 0 )=  0 in the last step], and 

( s )  i Zs str;(s) Vka'(k) (3.14) 
i m p -  k:O 

This last term gives the contribution of the non-Markovian transient to the 
asymptotic value of (s);( t) .  Using similar definitions for the mean square 
displacements (s 2 ) ;(t) and ( s 2 ) ;~(t), and defining the variances as usual by 
((s 2)) = (s 2) - [(s)12, the same kind of calculation gives 

((s2));(t) ;L'% ((s2)); +~ 2Dt (3.15) 

(3.16) 

with the diffusion coefficient D given by 

and 

1 2 Vk0~N(k ) + 2id" Vk~ N l(k) 
D = V~r/(k) = 2 ~x-~(k) 

k = 0  k = 0  

(<s2)); - V o'(k) 
a'(k) k=O--I(S);~I2 (3.17) 

5 For "transient" internal states, ~12) which are depopulated for t--* m, ~r'(k = 0)=0, so they 
cannot be normalized by (3.11); a higher-order approximation for P;(k, u) must be used. 
A matrix W 0 having such states is called "21 "incompletely reducible," 

822/65/1-2-12 
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which gives the contribution of the non-Markovian transient to the 
asymptotic value of ((s2))~(t). 

Case K>/2. In this case the EMP has several stationary states, i.e., 
~/o is(12) "decomposable" or "splitting." We will only analyze the case 
K =  2, as the extension to the general case is direct. From Eq. (3.6) we get 

ol(k)u + oo(k) 
P(k, u) u~o u 2 + r/l(k) u + r/o(k) -II(k, u) (3.18) 

with II(k, u) having the same meaning as for K =  1 and 

~N(k) r/~(k) = aN- ~(k) 
r/~ a N 2(k)' a N  2(k) 

~N_ ,(k) ~N-- 2(k) 
~ ~N_ 2(k ) ' (~l(k) = aN_ 2(k ~ 

(3.19) 

Laplace-antitransforming Eq. (3.18), we now get a non-Markovian evolu- 
tion equation 

~2Ili(k, t) + r/l(k ) (~,//'(k, t) + r/o(k ) Hi(k,  t) -- 0 

/ / ' ( k ,  t -- 0)  = a l l ( k )  

(~t/ / i(k,  t = O) : a~(k) -- r l l (k  ) ail(k) 

(3.20) 

The validity condition for (3.20) is given by Eq. (3.7) with K =  2. 
Now even for arbitrarily long times each Pe evolves as a single-state 

non-Markovian RW (with the definition of qo and t/1 inducing jumps to far- 
lying neighbors, as for K =  1). That the processes P; will not reach a 
Markovian regime was somehow to be expected, since the time scale for 
the setup of Markovian evolution in the K = 1 case turns out to be infinite 
for K~>2 [for now c~N l ( k = 0 ) = 0 ] .  This behavior is general for K~>2. 

Defining Hi(k  ) = Hi(k, t = 0) and f /~(k)= ~?,Hi(k, t = 0), we find from 
(3.20) the mean displacements 

t 2 

(s ) i ( t )  , ~  (s>)zo+ (S)~ot + iVkqo(k)lk=o~- (3.21) 

with 

(s i Vk//~)(k) I (3.22) )no = --i i //o(k) Ik=O 
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the contribution of the transient to the mean displacements, and 

i . V~Ho(k) [ 
(3.23) 

its contribution to the mean "velocity." Similarly, we get 

2 i 2 i ( s )  ( t ) , ~  (s ~ )n0 + ( s ) m  t 
t 2 

+ EV~r/o(k) + 2i(s )~7 o �9 Vkqo(k)] k =o ~- (3.24) 

for the mean-squared displacements, the averages with Ho and [/o having 
definitions similar to (3.22) and (3.23), respectively. 

In this case, drift and diffusion coefficients cannot be defined as the 
coefficients of t in the asymptotic expressions for (s ) i ( t )  and (s2)i(t), 
respectively. Instead, (3.24) shows that the processes U will exhibit 
enhanced diffusion. This behavior is general for K/> 2. 

Relevance of the EMP. From the preceding analysis, we see that the 
number K of stationary states of the EMP is the fundamental quantity 
determining the detailed asymptotic behavior of pi. The value of K is found 
by simply counting the number of invariants of W(k) which vanish at 
k = 0 .  

Discrete-Time MRWs. Asymptotic properties for large step number 
can be obtained by analyzing the generating functions (2.13) near z = 1 in 
a way analogous to the continuous-time case, but this requires rewriting 
Gi(k, z) as a ratio of polynomials in ( 1 - z ) .  We sketch a procedure for 
exploiting the continuous-time results to obtain asymptotic approximations 
for G ~ and asymptotic properties of Pi n : 

1. Start from a discrete-time MRW (2.10) and artificially introduce 
an exponential waiting time density ~b(t) = r - j  exp( - t/r) (the same one for 
all internal states), passing to a continuous-time description in terms of 
Markovian GMEs like (2.2), with (14) 

1 
W(k) = -  [ M ( k ) -  n] (3.25) 

r 

2. Compute the invariants of ~/(k) from its characteristic polynomial 
by definition (2.5), find the value of K, and construct the corresponding 
asymptotic approximation for U(k, u) by Eq. (3.6). 

3. Find the corresponding asymptotic approximation (z ~ 1) for 
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Gi(k,z) ,  which for ~b(u)= 1/(1 +zu)  [-the Laplace transform of ~b(t)] is 
given by 

Gi(k, z)=--1 pi k, u = (3.26) 
T Z  

41 Finally, either find the asymptotic properties by the usual 
methods (1) for discrete-time single-state RWs, using (3.26) and Tauberian 
theorems, ~ or calculate the corresponding continuous-time asymptotic 
quantities and then make the replacement (1) t/r ~ n. 

To illustrate the above procedure, we present the resulting general 
asymptotic expression for the K =  1 case (the E M P having only one 
stationary state). The asymptotic approximation for Pi(k, u) is then (3.8), 
so the result for G i is 

~'(k) 
Gi(k, z ) ~ 1  1 - z [ 1  + r~/(k)] (3.27) 

with q and a ~ defined by (3.9). The asymptotic mean displacements and 
variances are more easily obtained by setting t = nz in (3.12) and (3.15); the 
drift and diffusion coefficients are found from (3.13) and (3.16), multiplying 
by r and ~2, respectively. 

E x a m p l e .  To illustrate the use of the previous results, we will find the 
drift and diffusion coefficients for a RW on a ld, sparsely periodic lattice. 
The model is taken from Roerdink and Shuler, (5) but the results presented 
here are more complete. 

The model (see Fig. 1) consists of a regular ld lattice with spacing l, 
where the walker jumps to the right (left) with probability p (q) at each 
step (p + q = 1). The pausing-time densities are ~bl(t)= a e - " '  for the sites 
marked by dots, and q ~ z ( t ) =  be -b '  for the crosses. The unit cell contains N 

1 

p "I 

I q P 
% ' v t  / " %  

I 1 2 l �9 . N - I  N I 
t ,,J 

s+1  

Fig. 1. One-dimensional  sparsely periodic lattice. The jump probabilities from each site are 
p and q, the waiting times a i (dots) and b -1 (crosses). The dashed boxes are the unit cells. 
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sites (one cross and N -  1 dots) or "internal states," numbered as shown in 
Fig. 1. The M R W  is Markovian, and the matrix W(k) of Eq. (2.2) reads 

- a  aq~* bpe i ape - a  aqe*. . 

W(k) = ' " " . . ' . . . . . - . .  ' " .  (3.28) 

"'"" bq a p e - a  ; * /  

\ aqe* ape - 

where e=exp(ikl)  and the asterisk stands for complex conjugation 
(elements not shown are zero). It is easily seen that 

where 

and 

/zw(u) = ~--u-- abpq ~ NdT"O 2 - -  aN lb(p NeiNlk + q Ne i N l k )  (3.29) 

3-~ = (a + u ) J .  i -- aZpq-Y-~ 2, 

J2  = (a + u)(b + u) - abpq 

~=(b+u)  

2 ~ n ~ N  

(3.30a) 

y o = ~ l b  ~ (3.30b) 

The recurrence relation for ~ is readily solved, giving 

a n l(pq)n/2 

aWu 
{2(b - a)uTn(x) + [-(2a - b)u + ab] Un(x) } 

~--o _ an(pq),,/2 U,,(x) 
t l - -  

(3.31) 

where T, (Un) are the nth-degree Chebyshev polynomials of the first 
(second) kind (~9~ and x =  ( a +  u)/[2a(pq)X/2]. The required invariants are 
calculated through definition (2.5), substituting (3.31) in Eq. (3.29) and 
using the recurrence relations for Tn, Un, and their derivatives. ~ This 
gives 

u = 0  pU qU O~ N l(k) =-O/~w(u) = a U - Z [ a + ( N - 1 ) b ]  - (3.32a) 
Ou p - q 

C~u(k)=-/Cw(U)lu=o=aN-lb[pU(1 --eiXlk)+qN(1 --e--iUlk)] (3.32b) 

Substituting (3.32) in Eq. (3.13), we get the drift coefficient 

d= Nlab(p - q) (3.33) 
a + ( N - 1 ) b  
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The diffusion coefficient is computed by substituting (3.32) in Eq. (3.16), 
which gives 

D = DoA (3.34) 

where 

1 Nl2ab 
D~ 1)b (3.35) 

is the zero-drift diffusion coefficient, and 

A =N(p--q)~N +qu_qN (3.36) 

is the correction arising from the drift (A = 1 for p = q). 
The expressions for d and Do agree with the results of Roerdink and 

Shuler. (5) However, for nonvanishing drift the process is not "locally 
unbiased." This prevented Roerdink and Shuler from finding the full 
expression for D, since in this case their method needs the full set of eigen- 
values and eigenvectors of W 0 to be computed. They argue that the drift 
corrections to Do are small for macroscopic systems; however, from 
Eq. (3.36) we can see that this is not so, since for p varying from 1/2 to 1 
we find that A varies from 1 to N, the number of sites in the unit cell. 

Any model leading to a form for W(k) similar to (3.28) can be 
handled along the same lines. An example is that of multiple-trapping 
models, in particular the ladder-trapping model. (3) 

4. S U M M A R Y  A N D  D I S C U S S I O N  

As shown in Section 2, the exact expressions obtained for P(k, u) and 
G(k, z) allow the analytical calculation of quantities such as the frequency- 
dependent diffusion coefficient or the incoherent quasielastic dynamical 
structure function for scattering on the walkers. 

The asymptotic approximations derived for each single-state 
propagator pi show that they behave for long times as single-state RWs, 
Markovian if the EMP has a single stationary state and non-Markovian 
otherwise. The expressions for the first and second moments of U show 
that the single-state propagators exhibit normal diffusion if the EMP has 
a single stationary state, and enhanced diffusion if it has several. Hence, the 
number of invariants of W(k) vanishing at k = 0  fully specifies the 
qualitative long-time behavior of the single-state propagators. 
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The evolution equations and the expressions for Gi(k, z) and U(k, u) 
(both exact and asymptotic), as well as all quantities therefrom derived, 
involve only the knowledge of the matrices M(k) or W(k) and their 
invariants (only a few of them for asymptotic properties). So their con- 
struction is systematic and does not require the eigenvalue problem for 
or W to be solved, allowing for fully analytical calculations even in systems 
having a large number of internal states. Since no restrictive assumptions 
have been made concerning the properties of the MRW, these results have 
the widest generality. 

It must be noted that for both discrete and continuous time, finding 
the probability distributions in the space and time domains from Gi(k, z) 
or Pi(k, u) requires finding the zeros of the corresponding characteristic 
polynomial, i.e., the eigenvalues of M(k) or W(k). This can be thought to 
be a severe drawback, for the eigenvalue problem cannot be analytically 
solved in the general case. Howe,cer, as shown in the example given, and 
in some other applications, (9'11) most of the physically interesting informa- 
tion can be directly obtained from the expressions for Gi(k, z) or U(k, u) 
(or their asymptotic approximations) in the Fourier or Fourie~Laplace 
domains, respectively. From a practical point of view, this last feature is 
very useful. 

Also, such results as the existence of an asymptotic Markovian regime 
for the single-state propagators, or analytical expressions for the 
asymptotic properties, can be obtained after constructing only some 
invariants of M or W, which makes the application to specific problems a 
systematic matter. This can be seen in the example given, where knowledge 
of only 0~ N and ~N 1 sufficed for computing the drift and diffusion 
coefficients. (This MRW not being "locally unbiased," the calculation of 
the diffusion coefficient by the methods of ref. 5 or by former ones would 
have required finding the full set of eigenvalues and eigenvectors of large 
matrices.) 

Given the mathematical simplicity of the calculations involved, we 
think that the general results presented here can be profitably applied to a 
variety of problems. The extension of the asymptotic analysis to non- 
Markovian MRWs is in progress. 
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